

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Fluorescence Spectra of Eu³ and Tb³ Doped Na₆Ln(BO₃)₃ (Ln = La, Gd, Y) Phosphors

U. Rambabu^a, K. Annapurna^a, T. Balaji^a, J. V. Satyanarayana^a, K. Rajamohan Reddy^a, S. Buddhudu^a

^a Department of Physics, Sri Venkateswara University, Tirupati, India

To cite this Article Rambabu, U. , Annapurna, K. , Balaji, T. , Satyanarayana, J. V. , Reddy, K. Rajamohan and Buddhudu, S.(1996) 'Fluorescence Spectra of Eu³ and Tb³ Doped Na₆Ln(BO₃)₃ (Ln = La, Gd, Y) Phosphors', *Spectroscopy Letters*, 29: 5, 833 — 839

To link to this Article: DOI: 10.1080/00387019608001614

URL: <http://dx.doi.org/10.1080/00387019608001614>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

FLUORESCENCE SPECTRA OF Eu^{3+} AND Tb^{3+} DOPED
 $\text{Na}_6 \text{Ln}(\text{BO}_3)_3$ ($\text{Ln} = \text{La, Gd, Y}$) PHOSPHORS

U. Rambabu, K. Annapurna, T. Balaji, J.V. Satyanarayana

K. Rajamohan Reddy and S. Buddhudu

Department of Physics, Sri Venkateswara University
Tirupati - 517 502, India.

ABSTRACT

The fluorescence properties of Eu^{3+} and Tb^{3+} doped $\text{Na}_6\text{La}(\text{BO}_3)_3$, $\text{Na}_6\text{Gd}(\text{BO}_3)_3$, $\text{Na}_6\text{Y}(\text{BO}_3)_3$, $\text{Na}_6(\text{Gd, Y})(\text{BO}_3)_3$ powder phosphors are reported. These phosphors display fluorescent RED and GREEN colours when doped with Eu^{3+} and Tb^{3+} ions, respectively. The best fluorescence performance was consistently observed from the Na-Gd based hosts. The photoluminescence spectra were analysed by evaluating colour coordinates, relative intensity ratios, and stimulated emission cross-sections.

INTRODUCTION

Over the past four years, we have been extensively involved in the production and characterization of several rare earth ion doped oxyhalide powder phosphors.¹⁻⁶ In 1991, Leskela and Holsa⁷ reported the luminescence properties of Eu^{3+} in $\text{Li}_6\text{Ln}(\text{BO}_3)_3$ and described the importance of these host materials and the details of their lattice structure. Here we report studies on the luminescence spectra of Eu^{3+} and Tb^{3+} ions in $\text{Na}_6\text{Ln}(\text{BO}_3)_3$ powder phosphors.

EXPERIMENTAL

The procedures employed in the preparation of the following powder phosphors were similar to that described earlier by Holsa.⁸ For convenience, the Europium Phosphors are designated

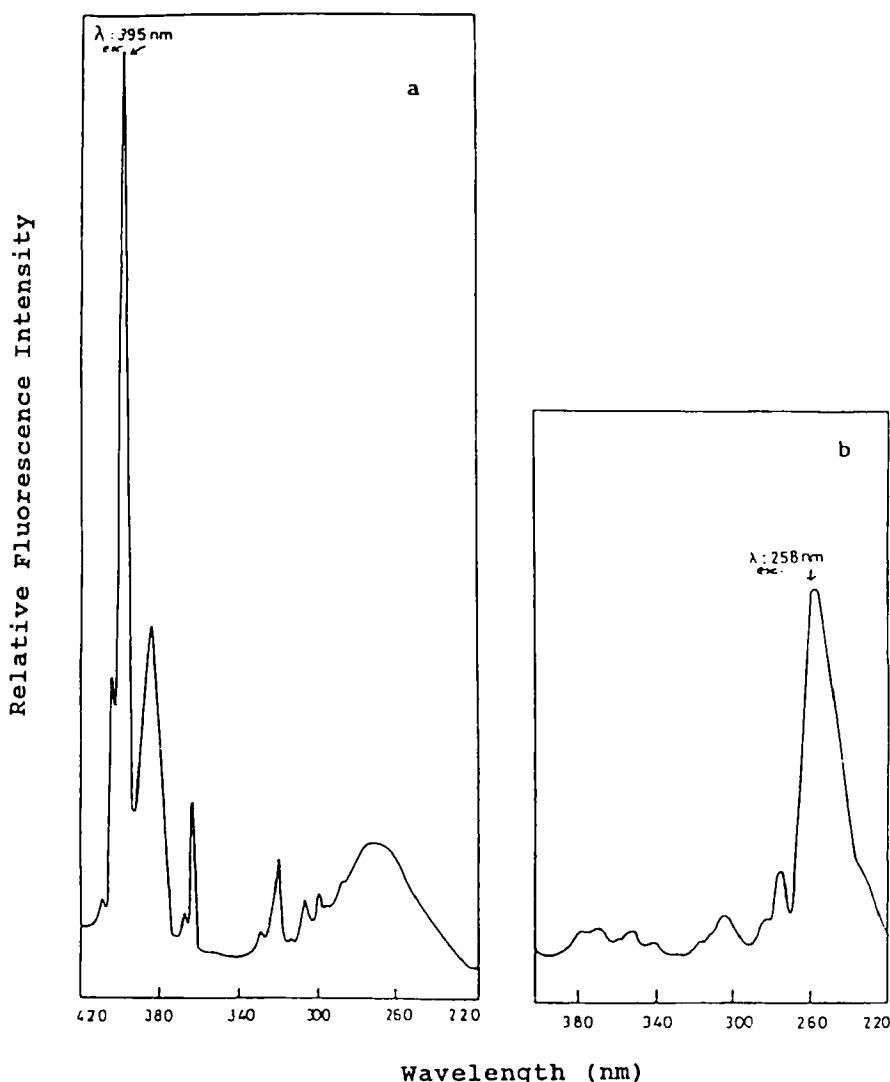


Fig.1: Excitation Spectra of (a) Eu^{3+} $\text{Na}_6\text{Gd}(\text{BO}_3)_3$
(b) Tb^{3+} : $\text{Na}_6\text{Gd}(\text{BO}_3)_3$ Phosphors

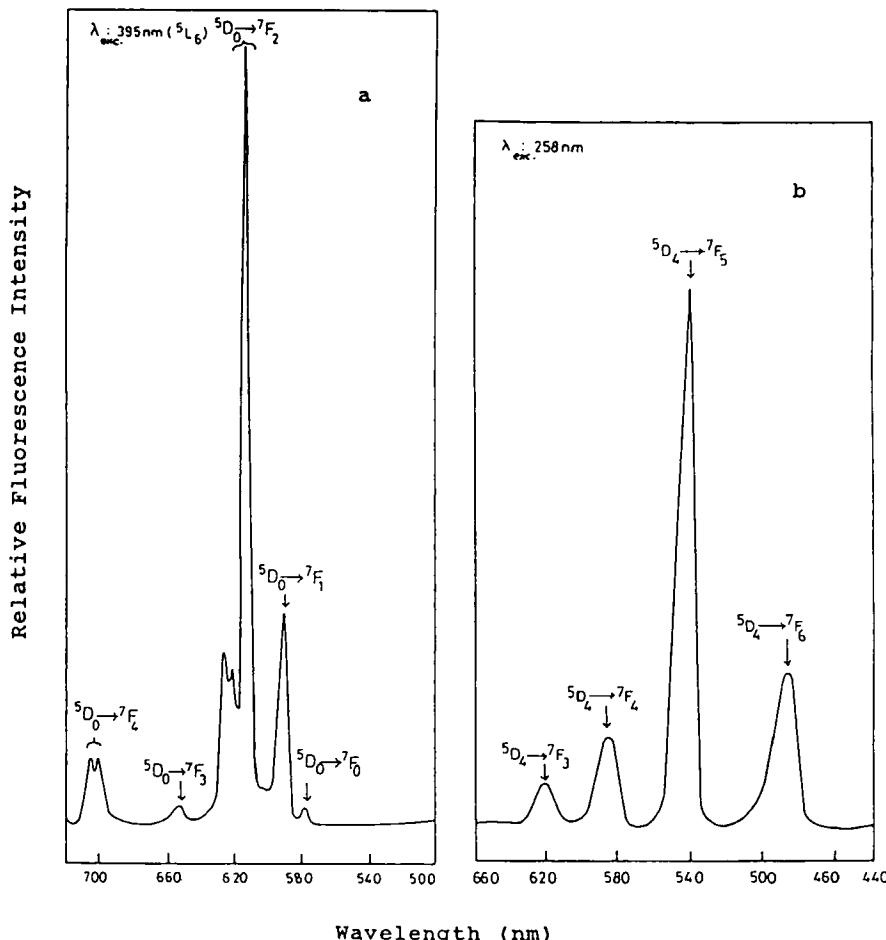


Fig.2: Photoluminescence Spectra of (a) Eu^{3+} $\text{Na}_6\text{Gd}(\text{BO}_3)_3$ (b) Tb^{3+} : $\text{Na}_6\text{Gd}(\text{BO}_3)_3$ Phosphors

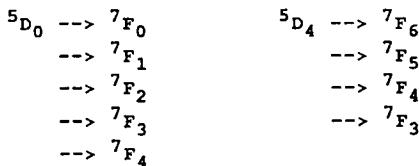
as Red Phosphors (RP) and the Terbium Phosphors as Green Phosphors (GP).

- RP-1. Eu^{3+} : $\text{Na}_6\text{La}(\text{BO}_3)_3$
- RP-2. Eu^{3+} : $\text{Na}_6\text{Gd}(\text{BO}_3)_3$
- RP-3. Eu^{3+} : $\text{Na}_6\text{Y}(\text{BO}_3)_3$
- RP-4. Eu^{3+} : $\text{Na}_6\text{Gd}_{0.3}\text{Y}_{0.1}(\text{BO}_3)_3$
- RP-5. Eu^{3+} : $\text{Na}_6\text{Gd}_{0.2}\text{Y}_{0.2}(\text{BO}_3)_3$
- RP-6. Eu^{3+} : $\text{Na}_6\text{Gd}_{0.1}\text{Y}_{0.3}(\text{BO}_3)_3$

- GP-1. Tb^{3+} : $\text{Na}_6\text{La}(\text{BO}_3)_3$
- GP-2. Tb^{3+} : $\text{Na}_6\text{Gd}(\text{BO}_3)_3$
- GP-3. Tb^{3+} : $\text{Na}_6\text{Y}(\text{BO}_3)_3$
- GP-4. Tb^{3+} : $\text{Na}_6\text{Gd}_{0.3}\text{Y}_{0.1}(\text{BO}_3)_3$
- GP-5. Tb^{3+} : $\text{Na}_6\text{Gd}_{0.2}\text{Y}_{0.2}(\text{BO}_3)_3$
- GP-6. Tb^{3+} : $\text{Na}_6\text{Gd}_{0.1}\text{Y}_{0.3}(\text{BO}_3)_3$

Table 1: Colour coordinates (\bar{x}, \bar{y}), emission level peak wavelength (λ_p nm), and stimulated emission cross-sections ($\sigma_p^E \times 10^{22} \text{ cm}^2$) for transitions $^5D_0 \rightarrow ^7F_2$ in RED for the Eu^{3+} and $^5D_4 \rightarrow ^7F_5$ in GREEN for the Tb^{3+} doped $\text{Na}_6\text{Ln}(\text{BO}_3)_3$ Phosphors.

Phosphor	Eu^{3+}				Tb^{3+}				
	\bar{x}	\bar{y}	λ_p	σ_p^E	Phosphor	\bar{x}	\bar{y}	λ_p	σ_p^E
RP-1	0.680	0.318	614	5.69	GP-1	0.287	0.554	543	19.37
			623	7.55					
			627	3.87					
RP-2	0.678	0.321	613	7.07	GP-2	0.274	0.568	542	19.22
			621	7.45					
			626	3.84					
RP-3	0.680	0.391	613	7.07	GP-3	0.279	0.550	542	19.23
			623	7.55					
			625	3.82					
RP-4	0.674	0.325	612	7.03	GP-4	0.298	0.545	542	19.23
			622	7.50					
			625	5.09					
RP-5	0.665	0.334	612	7.03	GP-5	0.279	0.552	542	21.97
			618	7.31					
			624	3.79					
RP-6	0.659	0.339	612	7.03	GP-6	0.285	0.554	543	15.49
			620	7.40					
			624	5.06					


The starting materials were in the form of rare-earth oxides [La_2O_3 , Gd_2O_3 , Y_2O_3 , Eu_2O_3 , Tb_4O_7]. Other salts, namely Na_2CO_3 and H_3BO_3 , were of research grade. The fluorescence spectral measurements were carried out on a Hitachi 650-10S spectrofluorimeter fitted with a 150W xenon arc lamp and a Hamamatsu Model R-928F photomultiplier tube. The recorded excitation spectra of Eu^{3+} and Tb^{3+} doped powder phosphors are shown in Figs. 1 (a,b). Using excitation lines 365 nm (for Eu^{3+}) and 268 nm (for Tb^{3+}), the photoluminescence spectra were recorded in the range 500-720 nm (Eu^{3+}) and 440-640 nm (Tb^{3+}), respectively. One typical profile of PL spectrum concerning Eu^{3+} and Tb^{3+} : phosphors has been shown in Figs 2 (a&b).

RESULTS AND DISCUSSION

The photoluminescence spectra of the powder phosphors contain the following transitions

Table 2 : Relative Fluorescence Intensity Ratios (R) of Eu^{3+} : $\text{Na}_6\text{Ln}(\text{BO}_3)_3$ (RP) and Tb^{3+} $\text{Na}_6\text{Ln}(\text{BO}_3)_3$ (GP) phosphors.

Dopant Ion	Emission transition ratio	RP-1	RP-2	RP-3	RP-4	RP-5	RP-6
Eu^{3+}	$5\text{D}_0 \rightarrow 7\text{F}_0$	0.057	0.076	0.040	0.065	0.056	0.050
	$5\text{D}_0 \rightarrow 7\text{F}_1$						
	$5\text{D}_0 \rightarrow 7\text{F}_1$	1	1	1	1	1	1
	$5\text{D}_0 \rightarrow 7\text{F}_1$						
	$5\text{D}_0 \rightarrow 7\text{F}_2$	0.769	0.961	0.673	0.786	0.760	0.711
	$5\text{D}_0 \rightarrow 7\text{F}_2$	0.076	0.230	0.040	0.098	0.098	0.101
	$5\text{D}_0 \rightarrow 7\text{F}_1$	3.884	4.173	3.265	3.721	3.380	3.694
	$5\text{D}_0 \rightarrow 7\text{F}_3$	0.096	0.076	0.081	0.081	0.084	0.084
	$5\text{D}_0 \rightarrow 7\text{F}_1$						
	$5\text{D}_0 \rightarrow 7\text{F}_4$	0.346	0.365	0.285	0.278	0.295	0.271
	$5\text{D}_0 \rightarrow 7\text{F}_1$	0.192	0.288	0.183	0.229	0.225	0.220
Dopant Ion	Emission transition ratio	GP-1	GP-2	GP-3	GP-4	GP-5	GP-6
Tb^{3+}	$5\text{D}_4 \rightarrow 7\text{F}_6$	0.36	0.36	0.32	0.35	0.38	0.36
	$5\text{D}_4 \rightarrow 7\text{F}_5$						
	$5\text{D}_5 \rightarrow 7\text{F}_5$	1	1	1	1	1	1
	$5\text{D}_4 \rightarrow 7\text{F}_5$						
	$5\text{D}_4 \rightarrow 7\text{F}_4$	0.26	0.26	0.22	0.24	0.28	0.25
	$5\text{D}_4 \rightarrow 7\text{F}_5$						
	$5\text{D}_4 \rightarrow 7\text{F}_3$	0.18	0.17	0.13	0.16	0.20	0.17
	$5\text{D}_4 \rightarrow 7\text{F}_5$						

(where $\text{Ln} = \text{La, Gd, Y}$)

Five emission transitions occur in all Eu^{3+} :phosphors and four in all Tb^{3+} :phosphors. From the spectral features (Figs. 2 a,b), it is clear that changes of chemical composition of the powder phosphors exert a significant influence on the fluorescence colours. The common factor in the two phosphors sets is that the fluorescence intensity for the Gd-Na based phosphor is much higher than the La-Na or Y-Na for both Eu^{3+} and Tb^{3+} phosphors. Similar reports of the superior performance of Gd-based phosphors exists in literature.⁹⁻¹¹ A bright RED emission was observed from all Eu^{3+} : phosphors because of the existence of the (${}^5\text{D}_0 \rightarrow {}^7\text{F}_2$) emission in at 614 nm. Similarly a GREEN emission occurs for Tb^{3+} :phosphors because of the (${}^5\text{D}_4 \rightarrow {}^7\text{F}_5$) emission at 542 nm. Following standard procedures made available by CIE (France) we have computed the colour coordinates (\bar{X}, \bar{Y}) given in Table 1. The same table reports computed values of stimulated emission cross sections (σ_p^E) for the emissions ${}^5\text{D}_0 \rightarrow {}^7\text{F}_2$ and ${}^5\text{D}_4 \rightarrow {}^7\text{F}_5$ of Eu^{3+} and Tb^{3+} doped powder phosphors. In order to compare the fluorescence efficiencies, we have also estimated the relative intensity ratios (R) for emissions of Eu^{3+} and Tb^{3+} phosphors (Table 2). It is concluded, based on the recorded photoluminescence spectral features, calculated colour coordinates (\bar{X}, \bar{Y}), the relative intensity ratios (R), and the stimulated emission cross-sections (σ_p^E) that the $\text{Eu}^{3+}:\text{Na}_6\text{Gd}_{0.2}\text{Y}_{0.2}(\text{BO}_3)_3$ and the $\text{Tb}^{3+}:\text{Na}_6\text{Gd}(\text{BO}_3)_3$ are the best generators of bright fluorescent Red and Green respectively.

ACKNOWLEDGEMENTS

We express thanks to Prof. S.V.J.Lakshman, Vice-Chancellor of Nagarjuna University for his kind cooperation and encouragement. Two of us (KA&TB) would like to thank the CSIR, New Delhi for the award of Senior Research Fellowships.

REFERENCES

1. T. BALAJI and S. BUDDHUDU
Spectrosc. Lett., 26(1) (1993) 113.
2. T. BALAJI and S. BUDDHUDU
Mater. Chem. Phys., 34 (1993) 310.
3. T. BALAJI and S. BUDDHUDU
J. Mater. Sci. Lett., 12 (1993) 1002.
4. U. RAMBABU, T. BALAJI and S. BUDDHUDU
Mater. Res. Bull., 30 (1995) In press.
5. U. RAMBABU, K. ANNAPURNA, T. BALAJI and S. BUDDHUDU
Mater. Lett., 23 (1995) 143.
6. U. RAMBABU, T. BALAJI, K. ANNAPURNA and S. BUDDHUDU
Mater. Chem. Phys., 43 (1995) 195.
7. M. LESKELA and J. HOLSA
Eur. J. Solid State Inorg. Chem., 28 (1991) 151.
8. J. HOLSA and M. LESKELA
J. Lumin., 48 & 49 (1991) 497.
9. H.S. KILIAAN and G. BLASSE
Mater. Chem. Phys., 18 (1987) 155.
10. MAO XAINGHUI, LU WEIBO, WU ZHENGUO and FENG YUNSHENG
Rare Earth Spectroscopy (Ed. Su Qiang)
World Scientific Publishers, P.R. China (1989) 163.
11. PEI ZHIWU and SU QUIANG
Rare Earth Spectroscopy (Ed. Su Qiang)
World Scientific Publishers, P.R. China (1989) 175.

Received: December 20, 1995

Accepted: February 8, 1996